

Round Robin and Shortest Job First Hybrid Scheduling
Algorithm Efficiency Analysis Using Frequency Count

and Memory Requirement
Renz Rallion T. Gomez

Author/Student
Isabel Subd., San Nicolas Pob.,

Concepcion, Tarlac, Philippines 2316
decemberavis19@gmail.com

Christopher M. Bermudez
Author/Student
Pias, Camp 7,

Baguio City, Philippines 2600
tupz0799@gmail.com

Vily Kaylle G. Cachero
Author/Student

Poblacion A. Tayug,
Pangasinan, Philippines 2445

cacherokaylle@gmail.com

Eugene G. Rabang
Author/Student

Poblacion Zone-V, Villasis,
Pangasinan, Philippines 2427
raterkracks@gmail.com

ABSTRACT
CPU scheduling algorithms are used to provide a method in
queueing and executing instructions. These can be improved
by either modifying, combining or creating a new algorithm.
This paper aims to determine the improvement of the
efficiency of End to End Dynamic Round Robin (E-EDRR)
Scheduling Algorithm Utilizing Shortest Job First Analysis
from its predecessors, Shortest Job First (SJF) and Round
Robin (RR). The researchers simtulated different test cases
wherein various instruction sets are defined to get results that
would identify their time and space efficiencies in the form of
frequency count and memory requirement, respectively. In the
findings across all the test cases, E-EDRR shows scores that
are fractions of the other two algorithms’ scores. Time
efficiency was improved by 42% against the original SJF
algorithm and 92% against the RR. Space efficiency was
improved by 52% against the original SJF algorithm and
100% against the RR with integrated quicksort algorithm.
Based on these findings, the researchers conclude that this
hybrid algorithm End to End Dynamic Round Robin
(E-EDRR) Scheduling Algorithm Utilizing Shortest Job First
Analysis is successful in being a more efficient scheduling
algorithm than its predecessors.

Keywords
Scheduling Algorithm; Round Robin, Shortest Job First;
Efficiency; Frequency Count; Memory Requirement;

1. INTRODUCTION
Scheduling Algorithms in Operating Systems provide an
established method of queuing instructions for the Central
Processing Unit (CPU) to execute. They define unique
systematic ways that enables the CPU to execute instructions
in efficient ways. Researchers around the globe are trying to
develop or improve algorithms to further optimize the
processes involved in scheduling tasks/instructions. These
improvements are always crucial in making scheduling
algorithms as efficient as possible to save resources. These

resources include time and memory space. Being able to be
efficient in the usage of these resources improves the overall
performance of the systems that uses these scheduling
algorithms. Our current technology can only rely on these
methods of improvement to further revolutionize its
capabilities in terms of performance.
The studies regarding efficiency comparisons, especially in
CPU scheduling algorithms are somewhat uncommon. In
respect to the academic community, these studies are still
relevant in determining the appropriate knowledge and
information to continue improving algorithms. Some studies
specify in improving the metrics that affects the performance
of the scheduling. This includes CPU utilization, throughput,
turnaround time, waiting time, response time and context
switches. Others use simulation or mathematical analysis to
calculate efficiencies. This paper uses simulation and
observation to analyze time and space efficiencies of the
subjected scheduling algorithms.
Popular scheduling algorithms include First Come First Serve
(FCFS), Shortest Job First, Round Robin, Priority Algorithm
and more. Although these existing algorithms are sufficient,
they have their own downsides. For example, Round Robin
(RR) has a characteristic that its performance is heavily reliant
on its time quantum (TQ) and can become highly inefficient if
the TQ is too short causing it to have an abundance of context
switches. Another example is the Shortest Job First’s (SJF)
flaw wherein a congestion occurs on the longer instructions
due to SJF’s characteristic of prioritizing the shorter
instructions first. These issues introduce inefficiencies because
of the lack of proper process management.
This paper aims to determine the order of growth of End to
End Dynamic Round Robin (E-EDRR) Scheduling Algorithm
Utilizing Shortest Job First Analysis, Shortest Job First and
Round Robin. It also aims to determine whether there is a
difference in the determined orders of growth. If there are
differences, this paper aims to determine whether the hybrid
algorithm, E-EDRR, has better efficiency than its
predecessors, SJF and RR.

The following research will be in the form of simulation of
queuing and executing various instruction sets. The analysis
will calculate for the number of times a statement has been
executed and the number of Bytes in the memory space used
by the algorithms. These simulations are represented as test
cases. These test cases include variables of the number of
instructions and their length. After said test cases were
conducted, a discussion will explain the results acquired.
These results will be validated and concluded.
Recommendations will also be provided for future references.

2. REVIEW OF RELATED LITERATURE
This chapter presents the related literature and studies both
local and foreign sources. This also includes theoretical
framework terms, defined conceptually and operationally for
clarity.
This paper aims to determine the improvement of SJF and RR
through the efficiency analysis of time and space used by
E-EDRR but the most common metrics used to further
improve scheduling algorithms include:
Turnaround Time: The time required to complete a process
(wall clock time). It starts from submission time to
completion.
Waiting Time: The time that a process spends in the queue
before being executed.
Response Time: The time it takes to respond to an issuance of
a command.
Context Switch: The process of switching tasks/thread, given
that the current process is saved so it can be continued later
on.
Improved CPU scheduling algorithms are usually in the form
of combined existing scheduling algorithms but making some
simple to complex changes in the algorithms structure. Some
of the most popular existing algorithms follows:

1. The First Come First Serve (FCFS) or also known as
First In First Out (FIFO) uses the queue method of
scheduling wherein the first to arrive is the first to leave. In
reality, it is represented by a line or a lining system.

2. Shortest Job First (SJF) analyzes the tasks and
executes the shortest one first.

3. Round Robin (RR) consecutively executes each task
equally given a TQ.

4. Priority Algorithm orders processes based on their
priority number that is given to each process (given priority
number 0 as the highest priority, 1, 2, …, n as lowest priority).

5. Best Job First (BJF) queues tasks based on the tasks
Priority, Arrival Time and Burst Time (given factor f where: f
= Priority + Arrival Time + Burst Time to determine tasks
location in the ready queue).
Other studies used both qualitative and quantitative research
methods. Researchers evaluate the algorithms given to them in
terms of their run-time efficiency [1]. In this paper, the
researchers only used quantitative method where we used our
findings and comparing them. Other studies focused on the
evaluation of the efficiency of predictive schedules using
criteria: makespan, total tardiness, flow time, idle time. In
terms of efficiency of reactive schedules, these are evaluated
using: solution robustness criterion and quality robustness
criterion. [2] To simplify, in this paper, the researchers used
time and memory space as criteria in determining efficiencies.
Improved Mean Round Robin with Shortest Job First

Scheduling (IMRRSJF) [3]: This algorithm has combined
features of both RR and SJF, ie, the processes are arranged
according to the burst time values and time quantum is
calculated as the square root of the product of mean and
highest burst time. Whenever a new process comes in, the
processes are again sorted in ascending order and time
quantum is calculated again. E-EDRR has the same property
but the time quantum is calculated based on the current
shortest instructions’ burst time.
Augmented Dynamic Round Robin scheduling (ADRR) [4]:
In this algorithm, processes are executed according to their
arrival times. Once a process is executed for the defined time
quantum, instead of switching to the next process, it checks
whether the resultant burst time of the current process is less
than or equal to time quantum value. E-EDRR has a different
approach where it checks the longest instruction for the next
process.
An experiment done on the Fittest Job First Dynamic Round
Robin (FJFDRR) scheduling algorithm submitted a depleting
number of context switches, average turnaround time, and
average waiting time. [5]. The researchers also conducted
experiments on the E-EDRR and it showed lower turnaround
time, waiting time and context switches than the RR and SJF.
Time Quantum Based Improved Scheduling Algorithm
(TABISA) [6]: This algorithm made use of a Median based
time quantum based scheduling algorithm which is a
combination of SJF & RR where all the jobs in the queue are
first aligned as per their burst time in ascending order and
them Round robin is applied for improving the performance.
This introduced a median based time quantum as an
instruction set wherein E-EDRR introduced an individual
analysis of instructions in calculating the time quantum.
Dynamic Quantum with Re-Adjusted Round Robin
Scheduling Algorithm and Its Performance Analysis (DQRR)
[7]: This algorithm first arranges processes in increasing order
of burst times, calculates time quantum as the median of the
burst-times. After each process execution, the processes are
re-arranged such that process with least remaining burst-time
will come first, then the process with the highest remaining
burst-time comes followed by the process with the second
least remaining burst-time and so on. E-EDRR has the same
properties but it is the same as TABISA [6] which uses a
median as a basis to the time quantum wherein E-EDRR the
shortest instruction’s burst time as time quantum.
Enhanced Precedence Scheduling Algorithm with Dynamic
Time (EPSADTQ) [8]: This algorithm used the typical round
robin but introduced priority assignment to sort the
instructions. E-EDRR did not make use of priority queues but
instead used the SJF method to queue the instructions.
Hybrid Scheduling and Dual Queue Scheduling [9]: This
algorithm was an optimization tool. It used two queues, the
waiting and the execution queues. E-EDRR also used this dual
queue strategy to store the instructions. This resulted in a more
organized separation and sorting of instructions.
A comparative study of dispatching rules in dynamic
flowshops and jobshops [10]: This showed the results of
mathematical analysis using simulation that differentiated
scheduling algorithms in the form of statistical functions. This
paper also made use of simulation but the researchers
calculated for the time and space efficiencies using frequency
count and memory requirement.

3. METHODS
The purpose of this chapter is to explain methods and the
options upon achieving the results of the research. The
researcher’s had decided to evaluate two types of algorithm
efficiencies in which are the time and space efficiencies.
Time Efficiency was chosen by the researchers due to the fact
that it is a quick method to collect time intervals that measures
the amount of time that the algorithm or instructions is
executed. This is used to test the efficiency of the E-EDRR
algorithm’s execution time that allows the researchers to
compare and conclude the results to other algorithms in terms
of its efficiency of its execution time. Space efficiency is a
measurement of the amount of memory that is needed for an
algorithm to be executed.
In addition, space efficiency is the ability to store and manage
data that can consume the least amount of spaces without any
collision on the performance of the algorithm, which will
result in a less memory requirement. This is used to test the
efficiency of the E-EDRR algorithm’s memory allocation that
allows the researcher to compare and conclude the results to
other algorithms in terms of its efficiency of its space or
memory.
These algorithm efficiencies will be integrated among the
researcher’s algorithm since both of these efficiencies are
reliable for the research. A quantitative arrangement is
specifically applicable for the purpose of this research, where
the connection between several variables has to be interpreted
through testing and simulation of test cases.

3.1 E-EDRR
The End to End Dynamic Round Robin (E-EDRR) Scheduling
Algorithm Utilizing Shortest Job First Analysis functions as a
method of queuing tasks that the CPU will process. E-EDRR
is an improved Round Robin that uses the Shortest Job First
analysis to compare tasks and the end to end method to
execute different tasks.
It aims to reduce three metrics, the first is the time it takes to
complete a task, the second is the time it takes for the
incoming newly arrived task that process the tasks to be
executed, and lastly is the number of times that CPU will
switch between tasks.
3.1.1 Assumptions

1. Burst times are known.
2. A batch of tasks or an individual task is received and

the algorithm is applied.
3.1.2 Interpretation

1. Ready queue (Q1) is the queue that holds the tasks
that are ready for execution.

2. Tasks in Q1 are sorted based on their burst time.
3. Time quantum (TQ) is calculated by:

TQ = current shortest task’s burst time
----- [equation 2]

4. Algorithm is applied on the Q1 and is reapplied until
Q1 is empty.

5. Shortest and longest tasks are executed
consecutively.

6. If upon execution, the longest task is incomplete, the
longest task’s progress is saved and the burst time is
reduced by TQ.

7. Completed tasks are removed from Q1.

8. Newly arrived tasks are added to the Q1 and
updated.

3.1.3 Pseudocode of the E-EDRR
 Let TQ be the time quantum.

Let NA be the newly arrived processes.
Let Q1 be the ready queue
1. if(NA == true)

{enqueue NA to Q1,
repeat step 1}

 else
{proceed to step 2}

2. if(Q1 != empty)
{sort tasks according to burst time,
proceed to step 3}

else
{proceed to step 1}

3. Determine the TQ by using [equation 2]
4. if(Q1.length != 1)

{execute shortest task,
execute longest task}

else
{execute shortest task}

5. if(longest task != complete)
{Longest task’s progress is saved and its burst time is
reduced by TQ}

else
{proceed to step 6}

6. Dequeue completed tasks from Q1 and proceed to step
1

3.2 Shortest Job First
The Shortest Job First (SJF) scheduling algorithm processes
the smallest execution time that needs to be executed next, this
reduces the average waiting time to other processes that is
waiting for execution. The researchers used this as a tool to
compare the E-EDRR algorithm as it’s competitor in order to
test the full capabilities and efficiency of the algorithm.
3.2.1 Assumptions

1. Burst times are known.
2. A batch of tasks or an individual task is received and

the algorithm is applied.
3.2.3 Interpretation

1. Ready queue (Q1) is the queue that holds the tasks
that are ready for execution.

2. Tasks in Q1 are sorted based on their burst time.
3. Time Quantum (TQ) is calculated by:

TQ = current shortest task’s burst time -----
[equation 2]

4. Algorithm is applied on the Q1 and is reapplied until
Q1 is empty.

5. Completed tasks are removed from Q1.
6. Newly arrived tasks are added to the Q1 and is

updated.
3.2.3 Pseudo Code of the SJF
 Let BT be the burst time
 Let NA be the newly arrived task
 Let Q1 be the ready queue

1. if(NA == true) {
 enqueue NA to Q1;

 repeat step 1;
} else { proceed to step 2 }

2. sort task according to BT;
proceed to step 3;

3. if (Q1 != empty) {
 execute shortest task;
 repeat step 3;
} else { proceed to step 4}

4. Dequeue completed tasks from Q1 and proceed to
step 1

3.3 Round Robin
The Round Robin (RR) scheduling algorithm processes a fix
time quantum in order to execute the task, each processes are
executed for a given period of time. The researchers used this
as a tool to compare the E-EDRR algorithm as its competitor
in order to test the full capabilities and efficiency of the
algorithm. However, the researchers decided to include a
sorting mechanism to the algorithm, specifically the quick
sort, to sort the instructions as it levels the complexity of the
other two scheduling algorithms.
3.3.1 Assumptions

1. Time quantum is fixed to 25.
2. Burst times are known.
3. A batch of tasks or an individual task is received and

the algorithm is applied.
3.3.2 Interpretation

1. Ready queue (Q1) is the queue that holds the tasks
that are ready for execution.

2. Tasks in Q1 are sorted based on their burst time.
3. Time Quantum is fixed given by the user
4. Algorithm is applied on the Q1 and is reapplied until

Q1 is empty.
5. If upon execution, the longest task is incomplete, the

longest task’s progress is saved and the burst time is
reduced by TQ.

6. Completed tasks are removed from Q1.
3.3.3 Pseudo Code for RR
 Let TQ be the time quantum
 Let NA be the newly arrived processes
 Let Q1 be the ready queue
 Let BT be the burst time of each task

1. if(NA == true) {
 enqueue NA to Q1;
 repeat step 1;
} else {proceed to step 2}

2. get BT of NA
proceed to step 3;

3. sort tasks according to BT
proceed to step 4;

4. if (BT < TQ) {
 execute task until completed;
} else {
 execute task according to TQ;
}
proceed to step 5;

5. If (Q1 != empty) {
 repeat step 3;
} proceed to step 6;

6. Dequeue completed tasks from Q1 and proceed to
step 1

4. FINDINGS
All test cases were performed with the consideration of the
following assumptions:

1. Processes are executed in a single processor.
2. Processes are CPU bound.
3. Number of processes and BTs are initially known.
4. SJF and RR are used as benchmarking algorithms.
5. RR will have a TQ of 25 in respect to the test cases’

average BT.
The metrics used in determining the results are variable
statement_counter that counts the number of statements
executed indicated in the TE column to verify the time
efficiency and variable space_counter that counts the number
of Bytes used by the algorithm indicated in the SE column to
verify the space efficiency.
Test Case 1: We assumed five (5) processes wherein they
have equal BTs (as shown in Table 2 below).

[Table 2: Test Case 1]
Task Burst Time
T0 25
T1 25
T2 25
T3 25
T4 25

Table 3 shows the comparative results of E-EDRR against the
benchmarking algorithms.

[Table 3: Test Case 1 Results]
Algorithm TE SE
E-EDRR 847 1686

SJF 1768 3866
RR 1788 3872

In the Table 3 above, E-EDRR gave time efficiency results
that are approximately 50% of the SJF and RR.

[Figure 1: Test Case 1 Results]

Test Case 2: We assumed five (5) processes wherein they
have increasing BTs (as shown in Table 4 below).

[Table 4: Test Case 2]
Task Burst Time
T0 19
T1 22
T2 25
T3 28
T4 31

Table 5 shows the comparative results of E-EDRR against the
benchmarking algorithms.

[Table 5: Test Case 2 Results]

Algorithm TE SE
E-EDRR 1391 2814

SJF 1768 3866
RR 2392 5156

In the Table 5 above, E-EDRR shows results that are 70% of
the SJF’s results both in time and space efficiencies. On the
other hand, the results show only about 60% of the RR’s time
efficiency results and 55% of the RR’s space efficiency result.
Still indicating that the E-EDRR is more efficient than the
other algorithms.

[Figure 2: Test Case 2 Results]

Test Case 3: We assumed five (5) processes wherein they
have decreasing BTs (as shown in Table 6 below).

[Table 6: Test Case 3]
Task Burst Time
T0 31
T1 28
T2 25
T3 22
T4 19

Table 7 shows the comparative results of E-EDRR against the
benchmarking algorithms.

[Table 7: Test Case 3 Results]
Algorithm TE SE
E-EDRR 1311 2814

SJF 1688 3826
RR 2312 5116

In the Table 7 above, E-EDRR shows results that are
approximately 75% of the SJF’s and are only about 55% of
the RR’s in both time and space efficiencies. Still indicating
that the E-EDRR is more efficient than the other algorithms.

[Figure 3: Test Case 3 Results]

Test Case 4: We assumed five (5) processes wherein they
have random BTs (as shown in Table 8 below).

[Table 8: Test Case 4]
Task Burst Time
T0 27

T1 16
T2 35
T3 26
T4 40

Table 9 shows the comparative results of E-EDRR against the
benchmarking algorithms.

[Table 9: Test Case 4 Results]
Algorithm TE SE
E-EDRR 1349 2762

SJF 1726 3802
RR 2937 6376

In the Table 9 above, E-EDRR shows time efficiency results
that is about 78% of the SJF’s time efficiency result and 72%
of the SJF’s space efficiency. In relation to RR, the results are
only about 46% in time efficiency and about 43% in space
efficiency.

[Figure 4: Test Case 4 Results]

Table 10 below shows the compilation of the results of the test
cases.

[Table 10: Compilation of Results]
Algorithm TE SE
E-EDRR 4898 10076

SJF 6950 15360
RR 9429 20520

In the Table 10 above, the compilation of results shows
significant lead of E-EDRR in terms of time efficiency by
40% to the SJF and 93% to the RR. While in terms of space
efficiency, E-EDRR shows a significant lead of 52% to the
SJF and 100% lead on the RR.

[Figure 5: Compilation of Results]

4.1 Discussions
Across all test cases, the E-EDRR has shown a significant lead
by getting lower scores in both time and space efficiencies
ranging from 40% to 100%.

In the test case 1, the algorithms has shown results wherein the
instructions have equal lengths. The E-EDRR has shown that
it is approximately 100% more efficient than the other two
algorithms, RR and SJF. These two algorithms had about the
same scores because their execution was about similar in the
given test case.
In the test case 2 and 3, the E-EDRR remains undefeated by
27% and 37% lead against the second rank, SJF, in time and
space efficiencies, respectively. E-EDRR also got a 72% and
83% lead against the third rank, RR, in time and space
efficiencies, respectively. SJF was significantly better than RR
by about 34% in both time and space efficiencies. This shows
that in instructions where the length is increasing or
decreasing, the SJF’s execution technique has an advantage
because it retains the number of context switches unlike RR.
In the test case 4, the results were almost similar to the
previous two test cases except the RR had significant increase
in space efficiency score.

5. CONCLUSIONS
In the findings, the results have shown improvement of the
original algorithms by combining them into a single hybrid
algorithm, specifically, as tested, the End to End Dynamic
Round Robin (E-EDRR) Scheduling Algorithm Utilizing
Shortest Job First Analysis. Time efficiency was improved by
42% against the original SJF algorithm and 92% against the
RR with integrated quicksort algorithm. Space efficiency was
improved by 52% against the original SJF algorithm and
100% against the RR with integrated quicksort algorithm.
As observed from the findings, the efficiency of the E-EDRR
varies based on the type of instruction set to be executed.
From the findings, if the instruction set consists of instructions
with equal burst times, the efficiency is as its best. The
researchers also found that if the instructions have varying
burst times, even if they are randomized or not, they have
about the same efficiencies that are worse than if they have
equal burst times.
As observed from the findings, the orders of growth of
E-EDRR in both time and space efficiencies are n^4 where n
is the number of instructions. In terms of time efficiency, the
order of growth of the E-EDRR is the same as the two other
algorithms. In terms of space efficiency, the order of growth
of the E-EDRR is lower than the other two algorithms since
their order of growth is n^5. Like E-EDRR, RR its space
efficiency depends on the type of instruction set. Their
difference allows E-EDRR to have better efficiency in a
certain degree based on that difference itself.
Therefore, the researchers conclude that this hybrid algorithm
End to End Dynamic Round Robin (E-EDRR) Scheduling
Algorithm Utilizing Shortest Job First Analysis is successful
in being a more efficient scheduling algorithm than its
predecessors.

6. RECOMMENDATIONS
For future references, the researchers recommend taking a
different approach in testing these algorithms where in the
coding of the algorithm does not require recursive methods to
lessen the variables of efficiency calculation.
Since the researchers have used actual codes to simulate and
test the algorithms because it the most accurate approach in
testing these algorithms. To generalize these analysis, the

more suitable approach would be through mathematical
analysis of the algorithms.

7. REFERENCES
[1] Shah, S. N. M., Mahmood, A. K. Bin, & Oxley, A.
(2009) Hybrid Scheduling and Dual Queue Scheduling
2009 2nd IEEE International Conference on Computer
Science and Information Technology
[2] Singh, A., Goyal, P., Batra, S. An Optimized Round
Robin Scheduling Algorithm for CPU Scheduling
International Journal on Computer Science and Engineering
Vol. 02, 2010
[3] Radhe Shyam and Sunil Kumar Nandal 2014 Improved
Mean Round Robin with Shortest Job First Scheduling
International Journal of Advanced Research in Computer
Science and Software Engineering, Vo.4, Issue.7, pp. 170-177
[4] N Srinivasu, A.S.V Balakrishna and R.Durgalakshmi
2015 An Augmented Dynamic Round Robin CPU Scheduling
Algorithm Journal Of Theoretical and Applied Information
Technology, Vol.76, No 1, pp . 119-124.
[5] Matarneh R 2009 Self-Adjustment time quantum in round
robin algorithm depending on burst time of the now running
processes American J. of Applied Sci. Vol 6 No. 10 pp 1831-7
[6] Lalit Kishor and Dinesh Goyal 2013 Time Quantum Based
Improved Scheduled Algorithm International Journal of
Advanced Research in Computer Science and Software
Engineering, Vol .3, Issue. 4,pp. 955-962.
[7] H.S.Behera,R.Mohanty and Debashree Nayak 2010 A
New Proposed Dynamic Quantum with ReAdjusted Round
Robin Scheduling Algorithm and its Performance Analysis
International Journal of Computer Applications, Vol. 5-No.5,
pp. 10-14.
[8] G.Siva Nageswara Rao, S.V.N. Srinivasu, N. Srinivasu
and G. Ramakoteswara Rao 2015 Enhanced Precedence
Scheduling Algorithm with Dynamic Time Quantum
(EPSADTQ) Research Journal of Applied Sciences,
Engineering and Technology vol 10 No.8: 938-941 ISSN:
2040- 7459,pp.931-941
[9] Shah, S. N. M., Mahmood, A. K. Bin, & Oxley, A.
(2009) Hybrid Scheduling and Dual Queue Scheduling
2009 2nd IEEE International Conference on Computer
Science and Information Technology
[10] Rajendran C, Holthaus O. 1996 A comparative study
of dispatching rules in dynamic flowshops and jobshops
European Journal of Operational Research. 1999

